13 research outputs found

    MORPHOLOGICAL AND ANATOMICAL INVESTIGATIONS INTO THE MECHANISM OF LEAF PAIR UNROLLING IN URARIA PICTA (JACQ.) DESV. EX DC. (PAPILIONACEAE), A MEDICINAL PLANT IN NIGERIA

    Get PDF
    Uraria picta leaf-pair unrolling inside out is a remarkable feat. A leaf-pair was investigated to understand the mechanism of spontaneous reverse inside out act of the plant. The upper (adaxial) and lower (abaxial) surfaces of the leaf-pair were examined using scanning and light microscopy. The scan showed diversity of hairs varying in shape from straight, pointed, curve, and club to hook. There were deposits of wax on both sides of the leaf-pair. The light microscope showed hairs are restricted to the midrib on the adaxial surface of the leaflets missing. Hooked hairs dominated the entire abaxial surface of the leaflets. The transverse section of the midrib section showed abundance of structural and mechanical tissues, collenchyma and sclerenchyma tissues. Both morphological and anatomical attributes were used to explain the mechanism and how the plant got its Yoruba vernacular name ‘Alupayida’ as well as its purported use in changing the sex of the unborn child and in breaking up love affairs

    Clinical effects of Garcinia kola in knee osteoarthritis

    Get PDF
    <p>Abstract</p> <p>Objectives</p> <p>Over the past years, there has been a growing number of knee osteoarthritis (KOA) patients who are not willing to comply with long-term non-steroidal anti-inflammatory drugs (NSAID) treatment and wish to use herbal anti- rheumatic medicine. This study assessed the clinical effects of <it>Garcinia kola </it>(GK) in KOA patients.</p> <p>Patients and methods</p> <p>Prospective randomized, placebo controlled, double blind, clinical trial approved by the institutional medical ethics review board and written informed consent obtained from each patient. All KOA patients presenting at the Obafemi Awolowo University Teaching Hospital complex were recruited into the study. The patients were grouped into four (A = Placebo, B = Naproxen, C = <it>Garcinia kola</it>, D = Celebrex). The drugs and placebo were given twice a day per oral route. Each dose consisted of 200 mg of <it>G. kola</it>, Naproxen (500 mg), Celebrex (200 mg) and Ascorbic acid (100 mg). The primary outcome measure over six weeks study period was the change in mean WOMAC pain visual analogue scales (VAS). Secondary outcome measures included the mean change in joint stiffness and physical function (mobility/walking).</p> <p>Results</p> <p>143 patients were recruited, 84 (58.7%, males – 24, females – 60) satisfied the selection criteria and completed the study. The effect of knee osteoarthritis bilateralism among the subjects was not significant on their outcome (p > 0.05). The change in the mean WOMAC pain VAS after six weeks of <it>G. kola </it>was significantly reduced compared to the placebo (p < 0.001). Multiple comparisons of the mean VAS pain change of <it>G. kola </it>group was not lowered significantly against the naproxen and celebrex groups (p > 0.05). The onset of <it>G. kola </it>symptomatic pain relief was faster than the placebo (p < 0.001). However, it was slower than the active comparators (p > 0.05). The duration of therapeutic effect of <it>Garcinia kola </it>was longer than the placebo (p > 0.001). <it>G. kola </it>period of effect was less than naproxen and celebrex (p < 0.001). <it>G. kola </it>subjects had improved mean change mobility/walking after six weeks better than the control group(p < 0.001). The mean change in mobility of the <it>G. kola </it>group when compared to the active comparators was not significantly better (p < 0.05). The mean change of knee joint stiffness (p < 0.001) and the change of mean WOMAC score (p < 0.001) were improved on <it>Garcinia kola </it>as compared to the placebo. The mid term outcome of eleven <it>Garcinia kola </it>subjects after cessation of use had a mean pain relief period of 17.27 +/- 5.15 days (range: 9–26 days). There was no significant cardiovascular, renal or drug induced adverse reaction to <it>Garcinia kola</it>.</p> <p>Conclusion</p> <p><it>Garcinia kola </it>appeared to have clinically significant analgesic/anti-inflammatory effects in knee osteoarthritis patients. <it>Garcinia kola </it>is a potential osteoarthritis disease activity modifier with good mid term outcome. Further studies are required for standardization of dosages and to determine long-term effects.</p

    Mimicking the Neurotrophic Factor Profile of Embryonic Spinal Cord Controls the Differentiation Potential of Spinal Progenitors into Neuronal Cells

    Get PDF
    Recent studies have indicated that the choice of lineage of neural progenitor cells is determined, at least in part, by environmental factors, such as neurotrophic factors. Despite extensive studies using exogenous neurotrophic factors, the effect of endogenous neurotrophic factors on the differentiation of progenitor cells remains obscure. Here we show that embryonic spinal cord derived-progenitor cells express both ciliary neurotrophic factor (CNTF) and brain-derived neurotrophic factor (BDNF) mRNA before differentiation. BDNF gene expression significantly decreases with their differentiation into the specific lineage, whereas CNTF gene expression significantly increases. The temporal pattern of neurotrophic factor gene expression in progenitor cells is similar to that of the spinal cord during postnatal development. Approximately 50% of spinal progenitor cells differentiated into astrocytes. To determine the effect of endogenous CNTF on their differentiation, we neutralized endogenous CNTF by administration of its polyclonal antibody. Neutralization of endogenous CNTF inhibited the differentiation of progenitor cells into astrocytes, but did not affect the numbers of neurons or oligodendrocytes. Furthermore, to mimic the profile of neurotrophic factors in the spinal cord during embryonic development, we applied BDNF or neurotrophin (NT)-3 exogenously in combination with the anti-CNTF antibody. The exogenous application of BDNF or NT-3 promoted the differentiation of these cells into neurons or oligodendrocytes, respectively. These findings suggest that endogenous CNTF and exogenous BDNF and NT-3 play roles in the differentiation of embryonic spinal cord derived progenitor cells into astrocytes, neurons and oligodendrocytes, respectively

    A genome-wide association study of resistance to HIV infection in highly exposed uninfected individuals with hemophilia A

    Get PDF
    Human genetic variation contributes to differences in susceptibility to HIV-1 infection. To search for novel host resistance factors, we performed a genome-wide association study (GWAS) in hemophilia patients highly exposed to potentially contaminated factor VIII infusions. Individuals with hemophilia A and a documented history of factor VIII infusions before the introduction of viral inactivation procedures (1979-1984) were recruited from 36 hemophilia treatment centers (HTCs), and their genome-wide genetic variants were compared with those from matched HIV-infected individuals. Homozygous carriers of known CCR5 resistance mutations were excluded. Single nucleotide polymorphisms (SNPs) and inferred copy number variants (CNVs) were tested using logistic regression. In addition, we performed a pathway enrichment analysis, a heritability analysis, and a search for epistatic interactions with CCR5 Δ32 heterozygosity. A total of 560 HIV-uninfected cases were recruited: 36 (6.4%) were homozygous for CCR5 Δ32 or m303. After quality control and SNP imputation, we tested 1 081 435 SNPs and 3686 CNVs for association with HIV-1 serostatus in 431 cases and 765 HIV-infected controls. No SNP or CNV reached genome-wide significance. The additional analyses did not reveal any strong genetic effect. Highly exposed, yet uninfected hemophiliacs form an ideal study group to investigate host resistance factors. Using a genome-wide approach, we did not detect any significant associations between SNPs and HIV-1 susceptibility, indicating that common genetic variants of major effect are unlikely to explain the observed resistance phenotype in this population

    Global synergistic actions to improve brain health for human development

    No full text
    The global burden of neurological disorders is substantial and increasing, especially in low-resource settings. The current increased global interest in brain health and its impact on population wellbeing and economic growth, highlighted in the World Health Organization's new Intersectoral Global Action Plan on Epilepsy and other Neurological Disorders 2022-2031, presents an opportunity to rethink the delivery of neurological services. In this Perspective, we highlight the global burden of neurological disorders and propose pragmatic solutions to enhance neurological health, with an emphasis on building global synergies and fostering a 'neurological revolution' across four key pillars - surveillance, prevention, acute care and rehabilitation - termed the neurological quadrangle. Innovative strategies for achieving this transformation include the recognition and promotion of holistic, spiritual and planetary health. These strategies can be deployed through co-design and co-implementation to create equitable and inclusive access to services for the promotion, protection and recovery of neurological health in all human populations across the life course

    Endogenous Neurogenesis After Traumatic Brain Injury

    No full text
    Adult neurogenesis in the central nervous system (CNS) is a distinctive process that leads to the renewal of neuronal populations in brain regions such as the olfactory bulb and hippocampal dentate gyrus. The existence of self-renewing, migratory neural stem/progenitor cells (NSPCs) in the adult brain has led to discoveries about their homeostatic role in neurogenesis and injury-induced changes following CNS trauma. Expansion and ectopic migration of quiescent endogenous NSPCs is thought to stabilize the injured milieu with the potential of providing cellular replacement of damaged or lost neurons. A better understanding of how resident NSPCs are robustly activated as well as limited will provide a way forward for maximizing the potential of these cells to reconstitute the cellular architecture in an attempt to regain function after injury. Here, we will focus specifically on traumatic brain injury and its effects on the neurogenic compartments in the adult brain and the subsequent responses
    corecore